Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides.

نویسندگان

  • Ziqing Jiang
  • Adriana I Vasil
  • John D Hale
  • Robert E W Hancock
  • Michael L Vasil
  • Robert S Hodges
چکیده

In our previous study, we utilized a 26-residue amphipathic alpha-helical antimicrobial peptide L-V13K (Chen et al., Antimicrob Agents Chemother 2007, 51, 1398-1406) as the framework to study the effects of peptide hydrophobicity on the mechanism of its antimicrobial action. In this study, we explored the effects of net charge and the number of positively charged residues on the hydrophilic/polar face of L-V13K on its biological activity (antimicrobial and hemolytic) and biophysical properties (hydrophobicity, amphipathicity, helicity, and peptide self-association). The net charge of V13K analogs at pH 7 varied between -5 and +10 and the number of positively charged residues varied from 1 to 10. The minimal inhibitory concentrations (MIC) against six strains of Pseudomonas aeruginosa as well as other gram-negative and gram-positive bacteria were determined along with the maximal peptide concentration that produces no hemolysis of human red blood cells (MHC). Our results show that the number of positively charged residues on the polar face and net charge are both important for both antimicrobial activity and hemolytic activity. The most dramatic observation is the sharp transition of hemolytic activity on increasing one positive charge on the polar face of V13K i.e., the change from +8 to +9 resulted in greater than 32-fold increase in hemolytic activity (250 microg/ml to <7.8 microg/ml, respectively).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salt-resistant alpha-helical cationic antimicrobial peptides.

Analogues based on the insect cecropin-bee melittin hybrid peptide (CEME) were studied and analyzed for activity and salt resistance. The new variants were designed to have an increase in amphipathic alpha-helical content (CP29 and CP26) and in overall positive charge (CP26). The alpha-helicity of these peptides was demonstrated by circular dichroism spectroscopy in the presence of liposomes. C...

متن کامل

The relationship between peptide structure and antibacterial activity.

Cationic antimicrobial peptides are a class of small, positively charged peptides known for their broad-spectrum antimicrobial activity. These peptides have also been shown to possess anti-viral and anti-cancer activity and, most recently, the ability to modulate the innate immune response. To date, a large number of antimicrobial peptides have been chemically characterized, however, few high-r...

متن کامل

Rationale for the design of shortened derivatives of the NK-lysin-derived antimicrobial peptide NK-2 with improved activity against Gram-negative pathogens.

The peptide NK-2 is an effective antimicrobial agent with low hemolytic and cytotoxic activities and is thus a promising candidate for clinical applications. It comprises the alpha-helical, cationic core region of porcine NK-lysin a homolog of human granulysin and of amoebapores of pathogenic amoeba. Here we visualized the impact of NK-2 on Escherichia coli by electron microscopy and used NK-2 ...

متن کامل

Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp.

Extensive use of classical antibiotics has led to the growing emergence of many resistant strains of pathogenic bacteria. Evidence has suggested that cationic antimicrobial peptides (AMPs) are of greatest potential to represent a new class of antibiotics. The largest group of AMPs comprises peptides that fold into an amphipathic alpha-helical conformation when interacting with the target microo...

متن کامل

Structure-activity studies of 14-helical antimicrobial beta-peptides: probing the relationship between conformational stability and antimicrobial potency.

Antimicrobial alpha-helical alpha-peptides are part of the host-defense mechanism of multicellular organisms and could find therapeutic use against bacteria that are resistant to conventional antibiotics. Recent work from Hamuro et al. has shown that oligomers of beta-amino acids ("beta-peptides") that can adopt an amphiphilic helix defined by 14-membered ring hydrogen bonds ("14-helix") are ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biopolymers

دوره 90 3  شماره 

صفحات  -

تاریخ انتشار 2008